
Preprint 
UCRL-134237 

Very High Resolution 
Simulation of Compressible 
Turbulence on the IBM-SP 
System 

A.A. Mirin, R. H. Cohen, B.C. Curtis, W.P. Dannevik, A.M. Dimits, 
M.A. Duchaineau, D.E. Mason, D. R. Schikore, SE. Anderson, 
D. H. Porter, P.R. Woodward, L.J. Shieh, S. W. White 

This article was submitted to 
Supercomputing ‘99, Portland, OR, November 15-19, 1999 

U.S. Department of Energy 

ll-l Lawrence 
Livermore August 5,1999 

Approved for public release; further dissemination unlimited 



DISCLAIMER 

This document was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States 
Government or the University of California. The views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States Government or the University of California, and 
shall not be used for advertising or product endorsement purposes. 

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be 
made before publication, this preprint is made available with the understanding that it will not be cited 
or reproduced without the permission of the author. 

This report has been reproduced 
directly from the best available copy. 

Available to DOE and DOE contractors from the 
Office of Scientific and Technical Information 

P.O. Box 62, Oak Ridge, TN 37831 
Prices available from (423) 576-8401 

http://apollo.osti.gov/bridge/ 

Available to the public from the 
National Technical Information Service 

U.S. Department of Commerce 
5285 Port Royal Rd., 

Springfield, VA 22161 
http://www.ntis.gov/ 

OR 

Lawrence Livermore National Laboratory 
Technical Information Department’s Digital Library 

http://www.llnl.gov/tid/Library.html 



Very High Resolution Simulation of Compressible Turbulence 
on the IBM-SP System* 

A. A. Mirint R. H. Cohen+ B. C. Curtis+ W. P. Dannevikf 

A. M. Dimitst M. -4. Duchaineaut D. E. Eliasont D. R. Schikorei 

S. E. AndersonJ D. H. Porte6 P. R. Woodwardt L. J. Shiehs 

S. W. Whites 

Abstract 

Understanding turbulence and mix in compressible flows is of fundamental impor- 
tance to real-world applications such as chemical combustion and supernova evolution. 
The ability to run in three dimensions and at very high resolution is required for the 
simulation to accurately represent the interaction of the various length scales, and con- 
sequently, the reactivity of the intermixing species. Toward this end, we have carried out 
a very high resolution (over 8 billion zones) 3-D simulation of the Richtmyer-Meshkov 
instability and turbulent mixing on the IBM Sustained Stewardship TeraOp (SST) sys- 
tem, developed under the auspices of the Department of Energy (DOE) Accelerated 
Strategic Computing Initiative (ASCI) and located at Lawrence Livermore National 
Laboratory. We have also undertaken an even higher resolution proof-of-principle cal- 
culation (over 24 billion zones) on 5832 processors of the IBM, which executed for 
over an hour at a sustained rate of 1.05 Tflop/s, as well as a short calculation with a 
modified algorithm that achieved a sustained rate of 1.18 Tflop/s. The full production 
scientific simulation, using a further modified algorithm, ran for 27,000 timesteps in 
slightly over a week of n-all time using 3840 processors of the IBM system, clocking 
a sustained throughput of roughly 0.6 teraflop per second. Nearly 300,000 graphics 
files comprising over three terabytes of data were produced and post-processed. The 
capability of running in 3-D at high resolution enabled us to get a more accurate and 
detailed picture of the fluid-flow structure - in particular, to simulate the development 
of fine scale structures from the interactions of long- and short-wavelength phenomena, 
to elucidate differences between two-dimensional and three-dimensional turbulence, to 
explore a conjecture regarding the transition from unstable flow to fully developed tur- 
bulence with increasing Reynolds number, and to ascertain convergence of the computed 
solution with respect to mesh resolution. 

1 Introduction 
The simulation of turbulence and mix has been one of the most demanding challenges of 
computational hydrodynamics. Many real-world applications (e.g., chemical combustion, 
supernova evolution, supersonic transport) are strongly dependent on the extent and 

*This is LLNL Report UCRL-X11-134237, 
+Lawrence Livermore National Laboratory, Livermore, CA 
:University of Minnesota, Minneapolis, MN 
SIBM, Austin, TX 



structure of interpenetration of disparate fluids. For example, the characteristic scales of 
the interpenetrating species affect the surface area to volume ratio, and hence the reactivity 
of the species. Often there is such a wide range of length scales that very high resolution 
is required for the simulation to accurately reflect how these scales interact. Moreover, for 
turbulent flows that are inherently three-dimensional, the two-dimensional approximation 
is often inadequate because of a tendency for those flows to develop an inappropriate 
inverse energy cascade. Highly compressible flows provide an even greater challenge, as 
the algorithms are required to both preserve shocks yet not overly dissipate the smooth 
flow. 

The work presented here deals with the numerical simulation of compressible three- 
dimensional flows with shocks, using spatial resolutions never before considered feasible. 
We utilize the simplified Piecewise Parabolic Method (sPPM) code of Woodward, et al. 
[l] on the IBM-SP Sustained Stewardship TeraOp (SST) machine at Lawrence Livermore 
National Laboratory (LLNL). We first present a proof-of-principle calculation that executed 
at a sustained 1.05 Tflop/s rate for over an hour. We then present a shorter proof-of- 
principle test that, using a modified algorithmic kernel, executed at 1.18 Tflop/s, and then 
a third test that used over 70 billion computational zones. 

The focus of this effort, though, is on a scientific simulation of the Richtmyer-Meshkov 
instability [a], which comes about when a shock intersects a contact discontinuity. The 
simulation presented here, which made use of a further modified algorithmic kernel, 
executed for 27,000 timesteps using over 8 billion computational zones. The project involved 
not only executing the code, but producing, offloading and postprocessing nearly 300,000 
files containing graphics data, whose total storage exceeded 3 Tbyte. 

Being able to run at such high resolution enabled us to observe relevant effects that 
could not be addressed at lower resolution. This allowed us to provide support for an 
important conjecture involving the development of turbulence, and to demonstrate how 
the interaction of long and short length scales can lead to the development of an even finer 
scale structure. 

Section 2 discusses the sPPM code. Section 3 describes the IBM platform used for this 
study. In section 4 we present the proof-of-principle tests. Section 5 describes the scientific 
problem, its execution on the IBM, and file retrieval. Section 6 addresses postprocessing 
and interpretation of the data. Conclusions are presented in section 7. 

2 The sPPM code 
2.1 Computational algorithm 
The sPPM code solves the compressible Euler equations using a simplified implementation 
of the Piecewise Parabolic Method (PPM), which is a higher-order accurate Godunov 
method developed by Colella and Woodward [3]. In a study that helped drive the 
development of the PPM scheme, Woodward and Colella [4] compared PPM to several 
other difference methods for problems involving strong shocks. Use of the Godunov 
approach in PPM makes this numerical scheme upstream-centered in each Riemann 
invariant separately. Together with nonlinear solutions of Riemann’s shock tube problem at 
grid cell interfaces when strong waves are present, this upstream centering produces sharp 
numerical representations of shocks on the computational grid. Monotonicity constraints 
inspired by the work of van Leer with the MUSCL scheme [5], together with a numerical 
diffusion term that adapts to the conditions of the local flow, keep the sharp shock fronts 
of the PPM scheme from generating unwanted and unphysical noise in the solution. PPM 



3 

also includes an interpolation scheme that is fourth order accurate for small timesteps. This 
interpolation scheme detects contact discontinuities in the flow solution and, when they are 
present, it employs an alternative interpolation technique that helps to keep the numerical 
representation of these discontinuities sharp. A library of PPM code modules, suitable for 
use in parallel computation, is being made available by the Laboratory for Computational 
Science and Engineering at the University of Minnesota under support from the DOE Office 
of Science [6]. 

SPPM contains several features of PPM, but significant ones have been omitted. 
Among those omitted features are contact discontinuity detection and steepening, and 
the computation of a coefficient of numerical viscosity that adjusts to the local needs of 
the flow in both space and time. This particular implementation of sPPM makes use of a 
Lagrangian method combined with a remap onto the original mesh, so that the algorithm 
is effectively Eulerian. The fluid is assumed to obey a single gamma-law equation of state. 
The time integration makes use of directional splitting along the three coordinate axes, 
with the order of directions reversing each timestep. 

2.2 Parallel implementation 
The sPPM code is written in Fortran 77 with some C routines. It uses a logically rectangular 
three-dimensional domain decomposition. Each subdomain is mapped to a computational 
node of the parallel architecture on which the code is being executed. Message-passing 
between nodes is accomplished using standard Message Passing Interface (MPI) calls. We 
have modified the sPPM driver to improve performance. The functionality has not changed 
(other than new restrictions on grid size), merely the programming implementation. 

For each directional update, the three-dimensional mesh is mapped into pencils of 
16 x 16 x N cells, with the long length, N, aligned along the sweep direction and the 
transverse directions tiled into 16 x 16 chunks. The logical pencils are processed in an 
order that facilitates overlap of communication with computation. The outer pencils (e.g., 
those closest to the subdomain boundary) are processed first. The interior pencils are then 
processed while the outer pencils are sending updated data to their neighbors. Each pencil 
is updated with 256 separate calls to a controlling routine that updates a single 1-D strip. 
The stencil requires up to 5 cells distant in the principal direction and two in the transverse 
direction. Data is stored into temporary arrays for improved cache performance. 

Multithreading is accomplished through POSIX threads. Additional slave threads are 
created, which along with the parent process communicate through shared static memory. 
Synchronization in shared memory is brought about through spinning and blocking barriers 
implemented with fetch-and-add operations. Parallel loops are self-scheduled using a shared 
integer index. One thread performs all of the message-passing (as well as participating in the 
strip updates); it assembles and disassembles message buffers and calls the MPI routines. 
The remaining threads are dedicated to the strip updates. 

A second copy of the major data structure has been added so that the full range of 
data both before and after the one-dimensional sweep can be stored. This replaces the 
circular buffering that was used in the original driver. The availability of the second array 
cuts data movement in half and facilitates overlap of communication, though at increased 
storage cost. Parallelization in shared memory is with respect to pencils; strip updates 
within a pencil are performed sequentially. 



4 

3 IBM machine configuration 
The IBM SST ASCI [7] Blue-Pacific system, located at Lawrence Livermore National 
Laboratory, is comprised of three 48%node sectors, with a total CPU count of 5856. 
Each node contains 1.5 to 2.5 Gbytes of local memory and is powered by four 332-MHz 
PowerPC 604-e processors. Allowing for up to 2 operations per clock period, the system 
peak performance is 3.9 TeraOp/s. The processor to memory bandwidth is 2.1 Tbyte/s 
(aggregate), and the node to node bandwidth is 150 Mbyte/s (bidirectional). There are 62.5 
Tbytes of RAID storage, with an I/O bandwidth to local disk of 10.5 Gbyte/s (aggregate). 
The three sectors are connected by six High Performance Gateway Node (HPGN) switches. 

4 Proof-of-principle tests 
The proof-of-principle tests make use of the test problem provided with the sPPM 
benchmark. That problem involves a shock passing through a gas with a density 
discontinuity. The interaction of the shock and the discontinuity leads to the Richtmyer- 
Meshkov instability. These tests were performed prior to the delivery of the machine to 
LLNL; thus we were able to utilize all three sectors. The tests used 5832 out of the total 
5856 processors. 

The first proof-of-principle calculation uses the standard sPPM benchmark (without 
kernel modification) on a 2304 x 2304 x 4608 grid, partitioned into a 9 x 9 x 18 domain 
decomposition, each subdomain supporting a 256-cubed grid. Four threads were assigned to 
each subdomain. The calculation ran for over an hour, and using 32-bit arithmetic achieved 
a 1.05 Tflop/s throughput. The flops were counted according to the rules governing the 
machine procurement, which assign 4 flops to floating divide and sqrt, and 1 flop to all 
other floating point operations. 

An execution trace tool was used to get accurate counts. A single node run with a 256 
x 256 x 256 local grid was traced for 60 timesteps (same local grid and number of timesteps 
as the full-system run above), resulting in counts for every instruction executed. Then the 
non-floating-point instructions were discarded, and the contract rules were applied. We 
measured a total of 2904 billion floating point operations per node, which when combined 
with 1458 nodes and a 4026 second execution time gives 1.05 (32-bit) Tflop/s. 

We also measured parallel performance. Within a four-processor node, memory 
contention reduces performance by about 10 percent: varying slightly with problem size, 
resulting in a factor of 3.6 speedup over single processor execution. Message-passing across 
nodes is almost entirely nearest-neighbor, resulting in very good scaling. When the local 
grid is sufficiently large, the communication is completely overlapped with computation, 
except for one global reduction per timestep. For 64 nodes arranged in a 4 x 4 x 4 
decomposition and a 256 x 256 x 256 local grid, there is a 60.8-fold speedup over single 
node operation (applied to that same local grid), and a 218.9-fold speedup as compared 
to running with a single processor, for an 85.5 percent parallel efficiency. Maintaining the 
same local grid and increasing the node count beyond 64 incurs very little additional loss 
of parallel efficiency due to the locality of the communication. Running with our largest 
configuration of 1458 nodes (5832 processors) is only 2 percent slower than with 64 nodes, 
and has a parallel efficiency of 83.8 percent. 

Next we used a version of the kernel that was heavily optimized by our IBM 
co-authors. The major optimizations included elimination of unnecessary/redundant 
operations, changing rarely needed unconditional operations to be conditional, moving some 
operations into the main routine, minimizing the number of vector temporaries to reduce the 



5 

cache footprint, recoding and/or merging loops to improve pipelining, repartitioning loops 
to balance resource requirements, and making explicit calls to the MASS (Mathematical 
Acceleration Subsystem) library for vector reciprocal, sqrt and reciprocal sqrt functions. 

We ran the same 2304 x 2304 x 4608 problem using the same 9 x 9 x 18 domain 
decomposition for 2 timesteps and achieved a throughput of 1.18 Tflop/s. The object of 
the optimized kernel was not this modest increase in flop rate, rather it was to reduce 
the wall time for the scientifc calculation. The optimized kernel has approximately half the 
number of floating point operations as the original kernel, and the wall time was reduced by 
a factor of 2. The optimized kernel reduced the computation portion so dramatically that 
overlapping the communication became problematic, especially with smaller local grids. 

Finally, we attempted to investigate the largest possible problem size that we could 
run on the IBM system. This involved using the original driver, since it is more memory 
efficient than the optimized driver, but is slower and does not overlap communication with 
computation. We also needed to use the original kernel, since the optimized kernel is 
incompatible with the original driver. We found that a problem size of 1460 x 1460 x 
33215, or 70.8 billion zones, would fit in the memory of the system. Since we had to use 
the slow driver and kernel, the throughput was only 0.88 Tflop/s, but even so the faster 
versions would not be fast enough to make a calculation of this size practical. 

5 Simulation of the Richtmyer-Meshkov instability 
5.1 Problem description 
The scientific simulation approximates the shock tube experiment of Vetter and Sturtevant 
[8], in which two gases are initially separated by a membrane pushed against a wire 
mesh. The actual experiment uses air and sulfur hexafluoride, which in our calculation 
we approximate as a single gas having a specific heat ratio of gamma=1.3. The contact 
discontinuity is located at z=O.59, where the shock tube extends from z=O to z=O.94 (see 
Fig. 1). The densities to the left and right of the contact discontinuity are initially 1.0 
and 4.88, respectively; the pressure equals 0.77 on either side. The calculation is carried 
out in a reference frame in which the contact discontinuity is roughly stationary; hence the 
fluid velocity on either side of the contact discontinuity is initialized to -0.47. Boundary 
conditions are periodic in the transverse (x and y) directions and continuation in the 
streamwise (z) direction; the latter does a good job of absorbing moderate-strength shocks. 

The location of the contact discontinuity is initially perturbed. The perturbation is 
chosen to be a superposition of a long wavelength and short wavelength disturbance, 
where the former represents the distortion of the mesh as it is being pushed, and the 
latter corresponds to the mesh spacing. Besides approximating the setup of an interesting 
experiment, this simulation provides information on the nonlinear interaction of two 
disparate scales, a fundamental building block for the nonlinear evolution of turbulence. 

A shock of Mach 1.5 is applied from the low-z end. The initial shock position is at 
z=O.47, and the velocity difference across the shock is 0.73. The density and pressure 
behind the shock are 1.93 and 1.86, respectively. 

5.2 Problem execution 
The shock tube simulation was run on a 2048 x 2048 x 1920 grid using 960 nodes of the 
IBM-SP system arranged in an 8 x 8 x 15 domain decomposition, with four threads per 
subdomain, making each node responsible for a 256 x 256 x 128 piece of t,he data. We 
were restricted in the number of nodes (as compared to the proof-of-principle tests) since 



6 

only two of the three 488-node sectors were in place at LLNL. The particular domain 
decomposition and problem shape were chosen to maximize computational resources while 
staying within the constraint (since relaxed) of the local mesh being at least 128 and a 
multiple of 16 in each of the three directions. The problem was run for 27,000 timesteps - 
just over 9 transverse sound crossing times. 

The simulation executed in 173 hours of machine time, spread over 226 hours of wall 
time, which was a remarkable efficiency given that the machine had just been delivered to 
Lawrence Livermore National Laboratory and was not yet generally available. Each node 
created its own component restart dump which was output to local disk, and immediately 
copied onto an additional node as backup. This occurred roughly every three hours. 
Occasionally a node would fail, and data was copied from the backup node onto a new 
node and the problem restarted. Each restart dump comprised 188 Gbyte (aggregate), and 
twice that amount was required to accommodate nodal backup components. 

The sustained throughput was estimated to be 0.6 Tflop/s or greater. This estimate 
was obtained using a flop counting simulation tool applied to a 256 x 256 x 128 grid, 
the same size grid for which a single node was responsible in the scientific simulation. We 
needed to restrict t,he performance measurement to the local grid size since the flop counting 
simulator is serial. The results of the first two timesteps indicated an initial throughput 
of the scientific simulation of 0.627 Tflop/s. We then observed, using the simulator, that 
conditional code in the kernel causes the flop count per timestep to increase as the execution 
proceeds. This increase occurs during the early phase of the calculation and asymptotes 
to about 21 percent. The CPU time per timestep increases as well, but to a lesser extent 
than the flop count. Therefore, the flop rate increases slightly as the calculation proceeds. 
Folding in an additional (observed) 6 percent degradation due to offloading of scientific 
data, we cite the conservative figure of 0.6 Tflop/s for the sustained throughput. 

The floating point computation rate in the science run is clearly lower than that of the 
proof-of-principle test carried out with the optimized kernel, even allowing for the lower 
node count. The figure of 1.18 Tflop/s on 1458 nodes would scale to 0.777 Tflop/s for the 
node count of 960 that was used in the science run. There are three main reasons for the 
lower rate. First, the science run utilized an additional optimization in the kernel, namely 
combining the vect,orized square root and reciprocal funcitons into a vectorized reciprocal 
square root. This reduced wall time by 6 percent but reduced the flop count by 15 percent, 
resulting in a 7.8 percent decrease in flop rate. Second, the local grid for the science run was 
half as large as that of the proof-of-principle run, leading to an 8 percent decrement in flop 
rate; the smaller local grid has a less favorable surface-to-volume ratio, yielding less overlap 
of communication and computation; recent optimizations in the communication strategy 
have since cut that difference to 3 percent. The final difference between the science run 
and the proof-of-principle run is that many system daemons were turned off for the latter; 
we can quantify t,hat effect by noting that when the proof-of-principle test was rerun at 
LLNL, we consistently observed roughly 3 percent lower floppage than prior to machine 
delivery; once the system daemons (most notably the Global Parallel File System daemon) 
were turned off, t,he flop rate returned to its pre-delivery value. Applying these three 
degradations to the 0.777 Tflop/s figure yields 0.639 Tflop/ s, in excellent, agreement with 
our estimate of 0.627 Tflop/s for the first two timesteps. 

Each node creat,ed its own component graphics data files (described below), in total 
comprising over 3 Tbytes of data, spread over 275,000 files. This data was output to local 
disk. Once there. it was compressed and copied (using parallel remote copies) onto the 
Global Parallel File System. The copying was under the control of nodes not, being utilized 



7 

for the sPPM execution. This procedure in effect accomplished asynchronous output, as 
the I/O took place during code execution with minimal effect (roughly 6 percent) on 
throughput. The data was then offloaded onto a graphics postprocessing machine and 
ultimately shipped to archival storage. 

6 Postprocessing and interpretation of data 
The sPPM code creates two types of graphics data files. Brick-of-byte (BOB) files contain 
one byte of information per gridpoint. The byte value (0 to 255) represents the value of the 
physical quantity concerned relative to the global minimum and maximum, subject to a 
user-specified transformation. The simulation reported on here utilized BOB files of entropy 
subject to a linear transformation, so that for example a byte value of 128 represented data 
halfway between the minimum and maximum. The code produced 274 such BOB dumps, 
each of aggregate length 8.1 Gbyte partitioned among 960 files. 

The other type of output file is the “compressed dump.” Here all of the dynamical 
variables (e.g., density, pressure, velocity, material fraction) (or the logarithm for positive 
definite quantities such as density) are subjected to a linear transformation, and the 
representation is stored in 16-bit integer format. Ten compressed dumps were produced, 
each of aggregate length 80.6 Gbyte partitioned among 960 files. BOB files, which contain 
only partial and highly compressed information, are typically used for volume renderings, 
whereas compressed dumps may be used for more general purposes. 

6.1 Volume rendering 
The BOB data was postprocessed using the University of Minnesota volume renderer HVR 
(Hierarchical Volume Renderer) on an SGI Infinite Reality engine, in which infinite reality 
pipes are connected via high-bandwidth optical fiber channels to a high-capacity RAIDed 
array of Ciprico disks. 

HVR, still in its development phase, is an outgrowth of the earlier volume renderers 
“perpath” (a serial, in core, software volume renderer) and “Bob” (an interactive extension 
of perpath for which both software and SGI texture-hardware versions exist), which were 
also developed at the Universit.y of Minnesota [9]. HVR is a highly efficient volume renderer 
which runs on, and fully utilizes, the texture hardware on SGI Infinit,e-Reality-Engine 
computers and which has additional special enhancements that enable it, to make volume 
renderings at unprecedented graphical and data resolutions. These enhancements include 
the use of texture hardware, parallelization across multiple CPU’s and Reality-Engine pipes, 
and efficient out-of-core operation in which subregions of the data volume are rendered and 
these sub-renderings combined. This out-of-core, and out of texture-memory. operation 
involves fast reads of subset.s of the data from a time slice from the high-capacity disk 
array. 

A small number of renderings have been made from the full resolution data (2048 x 
2048 x 1920 bytes) at a graphical resolution of 3840 x 3072 pixels. These images have 
been shown in present,ations at full resolution on a 3840 x 3072 pixel SGI Y’ower \Yall” 
projection system at LLNL. A larger number of lower resolution images have been produced 
to animate time evolution of the Richtmyer-Meshkov layer evolution in the simulation. 

Figure 2 shows a volume rendering of entropy at the conclusion of the calculation. The 
shock has moved from left to right and a very small portion has reflect,ed off the right- 
hand wall. As noted earlier. we are working in a reference frame in which the contact 
discontinuity, after being encountered by the shock, is relatively stationary. Figure 3 shows 



8 

the entropy for a simulation at 384 x 384 x 384 resolution. The fine scale structure at high 
resolution is clearly not present at lower resolution. A simulation at 1024 x 1024 x 1024 
(see Fig. 4) indicates structure similar in scale to that at 2048 x 2048 x 1920, whereas one 
at 192 x 192 x 192 (see Fig. 5) indicates structure similar to that of 384 x 384 x 384. Hence, 
there appears to be a transition from unstable flow with relatively large-scale structures, 
to turbulence. This is in accord with the conjecture of Dimotakis [lo], who argues that 
such a transition should occur when there is sufficient separation between the energy- 
containing and dissipative scales to permit a well-developed forward cascade through an 
inertial range. Had we been restricted to lower resolution, we would not have been able to 
verify this transition in character. Also, comparison with visualizations of two-dimensional 
simulations at the same resolutions (see Figs. 6a and 6b) provides a dramatic illustration 
of the difference between three-dimensional and two-dimensional dynamics (forward vs. 
inverse cascade); the two-dimensional runs, rather than developing random-looking fine- 
scale structure at high resolution, tend to remain characterized by extended structures but 
with sharper boundaries. Clearly, if the two fluid species had been reactive, the reaction 
rates in these two simulations would differ substantially. 

With HVR one can “fly through” the volume. Such an excursion reveals a centrally- 
located cylindrical zone that contains identifiable bubbles and spikes that have survived for 
the duration of the simulation. These remnants of the initial short-wavelength pertubation 
are situated about the middle of the spike that originates from the initial long-wavelength 
perturbation. Outside of this cylinder (throughout most of the volume), the bubbles and 
spikes have given way to finer-scale turbulence. A comparison simulation of a single period 
of the short-wavelength perturbation shows a surviving bubble and spike, indicating that 
the coupling of long and short scales has destroyed most of the short-wavelength bubbles 
and spikes. 

6.2 Compressed dump postprocessing 
The compressed dumps are designed to be postprocessed by a3d, another member of the 
PPM Data Analysis and Rendering Toolkit [9]. A3d, which has been recently generalized 
to work in parallel and for large data sets, may be used to calculate any combination of 
algebraic, differential or integral forms on the raw data. The fields so produced may be 
output in the form of histograms, power spectra, cuts through the data, or brick-of-byte 
(BOB) files. Data is organized in a push-down stack (last in, first out) and input uses 
inverse Polish notation. A3d is designed to accept nodal input (one file per subdomain) 
and can convert between Big Endian and Little Endian formats. Like the volume renderer 
HVR, the unprecedented size of this data set has motivated the modification of a3d to 
run in parallel on SMP machines, run out-of-core on tiled subdomains, efficiently use and 
reuse first and second level cache, and utilize fast direct I/O, with I/O and computation 
overlapped. 

Figure 7 shows z-velocity energy spectra near the midplane for three different reso- 
lutions. At the highest resolution, we observe an inertial range within the wave number 
domain of roughly 30 to 300. Because of the unprecedented resolution and the convergence 
trend as resolution is increased, we have confidence that this inertial range is meaning- 
ful. According to Dimotakis’ conjecture, it is the existence of this well-developed inertial 
range that allows for the observed transition of the small-scale structures t,o the turbulence 
shown in Fig. 2. Plots of t,he mixing layer extent for these three resolutions as well as 
comparison to experiment (see Fig. 8) indicate both convergence and good agreement, be- 



9 

tween simulation and experiment. We could not have ascertained convergence - including 
a clear separation of the energy containing range, inertial range, and (numerically-induced) 
dissipation range - without the 8 billion zone simulation. 

7 Conclusions 
We have succeeded in carrying out a scientific calculation that until now was not feasible. 
The simulation used almost an order of magnitude higher resolution than previous successes 
and executed at a sustained 0.6 Tflop (32-bit arithmetic) for over a week (exclusive of 
machine down time). We were able to observe effects that could not be seen or verified at 
lower resolution; in particular we provided support for an important conjecture regarding 
the transition from large-scale unstable flow to fully developed turbulence, as well as 
evidence that the interaction of long and short wavelength perturbations destroys the short 
wavelength structures in favor of finer-scale turbulence. We believe this to be a significant 
advancement in our ability to simulate and understand turbulence. 

We have been simulating turbulent flows for many years, but until now it has not 
generally been possible to resolve within a single computation both the large-scale flow and 
the turbulent motions that it sets up. This simulation of the Richtmyer-Meshkov instability, 
with its extremely fine computational mesh, enables us to study the statisitical properties 
of the turbulence not in some artificial context resulting from arbitrary initial conditions 
but instead in a physical context realizable in a laboratory experiment. This achievement 
represents a great advance for our research. 

8 Acknowledgments 
We acknowledge Terry Heidelberg, Charles Athey, David Fox, James Garlick and Robin 
Goldstone of LLNL, and David Moffatt and Paul Herb of IBM for their assistance 
in system administration matters pertaining to the scientific simulation reported here. 
We acknowledge Roth Archambault of IBM for implementing sPPM-related compiler 
optimizations, Catherine Crawford of IBM for trouble-shooting last minute problems in 
the proof-of-principle calculations, and Andrew Wack of IBM for testing, debugging and 
support for the demonstration runs. 

We acknowledge the ASCI program both for its support of the scientific research and 
for providing the necessary computational resources. This work was performed under the 
auspices of the U.S.D.O.E. by Lawrence Livermore National Laboratory under contract No. 
W-7405-ENG-48. 

The University of Minnesota team acknowledges support from the DOE ASCI program, 
through contracts from both LLNL and LANL, from the DOE Office of Science through 
grants DE-FG02-87ER25035 and DE-FG02-94ER25207, from the NSF PACI program 
through subcontracts from NCSA, and from the University of Minnesota’s Supercomput,ing 
Institute. 

References 

[l] S. E. Anderson and P. R. Woodward, World \Yide Si-eb 
http://www.lcse.umn.edu/research/sppm, Laboratory for Computational Science and 
Engineering, University of 1Iinnesota (1995). 

[2] R. D. Richtmyer, Taylor Irlstability in Shock Acceleration of Compressible Fluids, Commun. 
Pure. Appl. Math, 13 (19GO): 297; E.E. Meshkov, Instability of the Interface of Two Gases 
Accelerated by a Shock Waue, SOY. Fluid Dyn., 4 (1969), 101. 



10 

[3] P. Colella and P. R. Woodward, The Piecewise Parabolic Method (PPM) for Gas-Dynamical 
Simulations, J. Comput. Phys., 54 (1984), pp. 174-201. 

[4] P. R. Woodward and P. Colella, The Numerical Simulation of Two-Dimensional Fluid Flow 
with Strong Shocks, J. Comput. Phys., 54 (1984), pp. 115-173. 

[5] B. van Leer, Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel 
to Godunov’s Method, J. Comput. Phys., 32 (1979), pp. 101-136. 

[6] P. R. Woodward, B. K. Edgar and S. E. Anderson, PPMlib, a library of code modules available 
on the World Wide Web at http:// www.lcse.umn.edu/PPMlib, Laboratory for Computational 
Science and Engineering, University of Minnesota (1999). 

[7] Accelerated Strategic Computing Initiative, World Wide Web http://www.llnl.gov/asci, 
Lawrence Livermore National Laboratory Report UCRL-M&125923. 

[8] M. Vetter and B. Sturtevant, Experiments on the Richtmyer-Meshkov Instability of an Air/SF6 
Interface, Shock Waves, 4 (1995), pp. 247-252. 

[9] S.E. Anderson and D.H. Porter, Laboratory for Computational Science and Engineering, 
University of Minnesota, private communication. 

[lo] P. E. Dimotakis, Some Issues on Turbulent Mixing and Turbulence, GALCIT Report FM93-la 
(1993). 



P 

7 

. 

11 

I I 
I I 
I I 

I I 
I I 
I I 

I 
I I 

cot-&t 
discontipuity 



12 



7 

. 

13 



14 

20~2x19~0 , 



15 

192”3 , 384”3 



. 

16 

! .! 1 



17 

100 
Wavenumber 

7 

1000 10000 

-513 
.““.“““.I-.” 2048”3 
.‘.- jhwl,; 1024”3 
---- 384A3 

FIG, 7. Energy spectra of z velocity at midplane versus resolution. An inertial range is present, 
consisting of wave numbers ranging from roughly 30 to 300 for the highest resolution case. 



18 

0.4 

0.3- 

: 
g 0.2- 

s 

I 

q 

0 
0 q 

Expt. normalized 
by mesh size 

O.l- 

by box size 

n, I 
“I 

0 Time lb 1’5 

FIG. 8. Mixing leyer width at 384 x 384 x 384 (muyenta), 1024 x 1024 x 1024 (blue), and 2048 
x 2048 x 1920 (green), and compared with experiment. The black boxes correspond to the simulation 
and experiment having the same wire grid size; the red crosses corre.spond to th,e simulation and 
experiment having the same box size. 


